Correction

R. Zieliński (Warszawa)

ESTIMATING MEDIAN AND OTHER QUANTILES IN NONPARAMETRIC MODELS

I am indebted to Dr Agata Boratyńska of Warsaw University for pointing out an error in the proof of the Theorem in the above paper. The formula $C_1(\varepsilon) \uparrow \frac{1}{2}$ as $\varepsilon \downarrow 0$ in the middle of page 365 should be replaced by

$$C_1(\varepsilon) \uparrow \frac{1}{2} - \frac{1}{2} \left(\frac{2n}{n} \right) \left(\frac{1}{2} \right)^{2n} \text{ as } \varepsilon \downarrow 0.$$

As consequences, the inequality $C_1(\varepsilon) > \frac{1}{2} - \frac{1}{2} \left(\frac{2n}{n} \right) \left(\frac{1}{2} \right)^{2n}$ should read

$$C_1(\varepsilon) > \frac{1}{2} - \frac{3}{4} \left(\frac{2n}{n} \right) \left(\frac{1}{2} \right)^{2n}$$

and the inequality $C_2(\varepsilon) > \frac{1}{2} \left(\frac{2n}{n} \right) \left(\frac{1}{2} \right)^{2n}$ should read

$$C_2(\varepsilon) > \frac{3}{4} \left(\frac{2n}{n} \right) \left(\frac{1}{2} \right)^{2n}.$$

The Theorem remains valid as stated.